Silver nanoparticles supported on alumina--a highly efficient and selective nanocatalyst for imine reduction.

نویسندگان

  • Raju Poreddy
  • Eduardo J García-Suárez
  • Anders Riisager
  • Søren Kegnæs
چکیده

Silver nanoparticles supported on alumina were prepared and tested in the catalytic reduction of various imines to primary and secondary amines and were shown to be exceptionally active and chemoselective. Furthermore, the catalytic activity of the prepared nanocatalyst was also tested in the synthesis of secondary amines from primary amines in a tandem reaction protocol (oxidation-imination-reduction) using air and molecular hydrogen as oxidizing and reducing agents, respectively. The reported synthesis is performed under mild reaction conditions, which complies with the demands of modern organic synthesis. Due to the mild reaction conditions and high conversion as well as high selectivity, we consider that the utilization of silver nanoparticles supported on alumina represents an attractive and environmentally friendly alternative to the current synthesis of N-alkyl amines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly efficient of cross-coupling reaction supported green synthesized palladium nanoparticles coated natural ligands as heterogeneous reusable nanocatalyst

An efficient procedure and green route has been developed by using eco-friendly green synthesized palladium nanoparticles (Pd-NPs) as reusable heterogeneous nanocatalyst (Pd@nanocat) for the synthesis of diaryl ethers from the cross coupling reaction of the aryl halides with the phenol in the presence of dimethylsulfoxide (DMSO) as a solvent at 110 oC under natural ligand condition capped Pd-NP...

متن کامل

Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis

Ru/Al2O3 catalysts were prepared by conventional incipient wetness impregnation as well as colloid deposition of RuCl3 precursor via in situ reduction with ethylene glycol (polyol) method on alumina support. The samples were characterized by TEM, XRD and TPR techniques. The catalytic performance tests were carried out in a fixed-bed micro-reactor under diffe...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Methane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method

An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...

متن کامل

Mn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides

In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 11  شماره 

صفحات  -

تاریخ انتشار 2014